Alkylphenol Xenoestrogens with Varying Carbon Chain Lengths Differentially and Potently Activate Signaling and Functional Responses in GH3/B6/F10 Somatomammotropes

نویسندگان

  • Mikhail Y. Kochukov
  • Yow-Jiun Jeng
  • Cheryl S. Watson
چکیده

BACKGROUND Alkylphenols varying in their side-chain lengths [ethyl-, propyl-, octyl-, and nonylphenol (EP, PP, OP, and NP, respectively)] and bisphenol A (BPA) represent a large group of structurally related xenoestrogens that have endocrine-disruptive effects. Their rapid nongenomic effects that depend on structure for cell signaling and resulting functions are unknown. OBJECTIVES We compared nongenomic estrogenic activities of alkylphenols with BPA and 17beta-estradiol (E(2)) in membrane estrogen receptor-alpha-enriched GH3/B6/F10 pituitary tumor cells. These actions included calcium (Ca) signaling, prolactin (PRL) release, extracellular-regulated kinase (ERK) phosphorylation, and cell proliferation. METHODS We imaged Ca using fura-2, measured PRL release via radioimmunoassay, detected ERK phosphorylation by fixed cell immunoassay, and estimated cell number using the crystal violet assay. RESULTS All compounds caused increases in Ca oscillation frequency and intracellular Ca volume at 100 fM to 1 nM concentrations, although long-chain alkylphenols were most effective. All estrogens caused rapid PRL release at concentrations as low as 1 fM to 10 pM; the potency of EP, PP, and NP exceeded that of E(2). All compounds at 1 nM produced similar increases in ERK phosphorylation, causing rapid peaks at 2.5-5 min, followed by inactivation and additional 60-min peaks (except for BPA). Dose-response patterns of ERK activation at 5 min were similar for E2, BPA, and PP, whereas EP caused larger effects. Only E2 and NP increased cell number. Some rapid estrogenic responses showed correlations with the hydrophobicity of estrogenic molecules; the more hydrophobic OP and NP were superior at Ca and cell proliferation responses, whereas the less hydrophobic EP and PP were better at ERK activations. CONCLUSIONS Alkylphenols are potent estrogens in evoking these nongenomic responses contributing to complex functions; their hydrophobicity can largely predict these behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinations of Physiologic Estrogens with Xenoestrogens Alter ERK Phosphorylation Profiles in Rat Pituitary Cells

BACKGROUND Estrogens are potent nongenomic phospho-activators of extracellular-signal-regulated kinases (ERKs). A major concern about the toxicity of xenoestrogens (XEs) is potential alteration of responses to physiologic estrogens when XEs are present simultaneously. OBJECTIVES We examined estrogen-induced ERK activation, comparing the abilities of structurally related XEs (alkylphenols and ...

متن کامل

Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells

BACKGROUND Our study examines the effects of xenoestrogen mixtures on estradiol-induced non-genomic signaling and associated functional responses. Bisphenol-A, used to manufacture plastic consumer products, and nonylphenol, a surfactant, are estrogenic by a variety of assays, including altering many intracellular signaling pathways; bisphenol-S is now used as a bisphenol-A substitute. All three...

متن کامل

Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

BACKGROUND Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefor...

متن کامل

Xenoestrogen-Induced ERK-1 and ERK-2 Activation via Multiple Membrane-Initiated Signaling Pathways

Xenoestrogens can mimic or antagonize the activity of physiological estrogens, and the suggested mechanism of xenoestrogen action involves binding to estrogen receptors (ERs). However, the failure of various in vitro or in vivo assays to show strong genomic activity of xenoestrogens compared with estradiol (E2) makes it difficult to explain their ability to cause abnormalities in animal (and pe...

متن کامل

Mechanisms of membrane estrogen receptor-alpha-mediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line.

The role of membrane estrogen receptor-alpha (mERalpha) in rapid nongenomic responses to 17beta-estradiol (E(2)) was tested in sublines of GH3/B6 rat prolactinoma cells selected for high (GH3/B6/F10) and low (GH3/B6/D9) mERalpha expression. E(2) elicited rapid, concentration-dependent intracellular Ca(2+) concentration ([Ca(2+)](i)) increases in the F10 subline. Lack of inhibition by thapsigarg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2009